CHROMENES FROM AGERATINA RIPARIA

SHANTA BANERJEE, JASMIN JAKUPOVIC, FERDINAND BOHLMANN, ROBERT M. KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; *Smithsonian Institution,

Department of Botany, Washington, DC 20560, U.S.A.

(Received 7 March 1985)

Key Word Index-Ageratina riparia; Compositae; new chromenes.

Abstract—The reinvestigation of the roots and aerial parts of Ageratina riparia afforded ten new chromenes, their structures being determined by spectral data and chemical transformations.

INTRODUCTION

The chemistry of the large genus Ageratina (Compositae, tribe Eupatorieae, subtribe Ageratinae) has been studied by many groups [1-9] and several chromenes [1-5], which are widespread in the genus, have been isolated. A previous study [10,11] of A. riparia (Regel) King et Rob., a widespread weed, has shown it to contain a number of chromenes. We now wish to report the isolation of ten new chromenes from A. riparia collected in Hawaii.

RESULTS AND DISCUSSION

The aerial parts of A. riparia afforded, in addition to germacrene D, ten new (1-10) and five known (11-15) [10, 11] chromenes.

The structure of chromene 1 (C₁₃H₁₆O₄, [M]⁺ 236) directly followed from its molecular formula and ¹H NMR spectrum which displayed the typical signals for a 2,2-dimethyl chromene having an unsubstituted C-5 position [10]. The relative positions of the hydroxy and two methoxy groups followed from the observed NOE between the two methoxy groups, between the H-5 and the hydroxy proton as well as from the absence of NOE between H-5 and either of the two methoxy protons. Moreover, NOE was observed between H-4 and the aromatic proton which confirmed a free C-5 position.

The ¹H NMR spectrum of chromene 2 (C₁₅H₂₀O₄, [M]⁺ 264) resembled closely that of eupatoriochromene C [12], both showing the presence of identical substituents but different chemical shifts, thereby suggesting that 2 possesed an alternative arrangement of the substituents in the benzene ring. Since the chemical shifts of C-4 and C-5 protons suggested an unsubstituted C-5 position [10] in 2, the 1-hydroxyethyl and two methoxy groups were tentatively placed at C-6, C-7 and C-8, respectively, leading to the structure 2. Oxidation of 2 to methylripariochromene A 12 [11], using pyridinium dichromate, confirmed this structure.

Structure 3 ($C_{14}H_{16}O_4$, [M]⁺ 248) also followed from its ¹H NMR spectrum, comparison of which with that of acetovanillochromene 14 [11], clearly showed that one C-2 methyl group of the later was replaced in 3 by a hydroxymethyl group (δ 3.86, 2H, s). Further confirmation for structure 3 was achieved by NOE experiments where

	R ¹	\mathbb{R}^2	R³	R ⁴
1	ОН	OMe	OMe	Me
2	CH(OH)Me	OMe	OMe	Me
3	СОМе	Н	OMe	СН₂ОН
4	COMe	Н	OMe	$CH_2O-ferul.$
5	СОМе	OH	Н	CH ₂ O - ferul.
6	COMe	OMe	OMe	CH₂OH
7	СОМе	ОН	OMe	СН₂ОН
8	CH(OH)Me	OMe	OMe	СН₂ОН
10	COMe	OH	H	CH ₂ OH
15	COCH ₂ OAc	OH	Н	Me
16	COCH ₂ OH	ОН	H	Me

9
$$R^1 = OH, R^2 = R^3 = OMe$$

9a $R^1 = R^2 = OMe, R^3 = OH$

2682

ripariochromene A 11: $R^1 = OH$, $R^2 = OMe$ methylripariochromene A 12: $R^1 = R^2 = OMe$ eupatoriochromene 13: $R^1 = OH$, $R^2 = H$ acetovanillochromene 14: $R^1 = H$, $R^2 = OMe$

clear effects were observed between H-4 and H-5 as well as between the acetyl methyl and both H-5 and H-7.

Chromene 4 ($\check{C}_{24}H_{24}\check{O}_{7}$, [M]⁺ 424) was clearly shown to be a ferulic acid ester of 3 by its ¹H NMR spectrum. Accordingly, additional signals for ferulic acid group were observed in the ¹H NMR spectrum of 4. Chromene 5 ($\check{C}_{23}H_{22}\check{O}_{7}$, [M]⁺ 410) was also found to be a ferulic acid ester of a 13-hydroxychromene. Its ¹H NMR spectrum agreed well with structure 5 in which the presence of a chelated hydroxy group (due to OH-7) located the ester group at C-13.

The structure of chromene 6 (C₁₅H₁₈O₅, [M]⁺ 278) followed from comparison of its ¹H NMR spectrum with that of methylripariochromene A 12 [11]. This structure was further confirmed by the observed NOEs between H-4 and H-5, between H-5 and the acetyl methyl and also between the two methoxy methyls.

The ¹H NMR spectrum of chromene 7 (C₁₄H₁₆O₅, [M]⁺ 264), resembled closely that of ripariochromene A 11 [10]. The observed NOE between the aromatic singlet and H-4 confirmed the presence of an unsubstituted C-5 position. A chelated hydroxy group was indicated by the ¹H NMR and IR spectra of 7, thereby locating the hydroxy group at C-7 and the methoxy group at C-8, leading to structure 7.

The structure of chromene 8 ($C_{15}H_{20}O_5$, [M]⁺ 280), followed directly from comparison of its ¹H NMR spectrum with that of 2. Further confirmation for this structure was achieved by its oxidation with pyridinium dichromate to give chromene 6.

Compound 9 ($C_{26}H_{30}O_8$, [M] + 470), isolated as a pale yellow oil, did not contain any aromatic proton in its ¹H NMR spectrum. Moreover, the ¹H NMR spectrum indicated the presence of two methoxy signals, each containing six protons, doublets for H-3 and H-4, each showing intensity for two protons, and a broad gem-dimethyl 12 proton singlet. From these facts together with its M, the presence of a dimer could be deduced. NOE experiments showed that there were interactions between the two methoxy methyls as well as between one of the methoxy and gem-di-methyls which established structure 9, ruling out the alternative structure 9a. When 9 was acetylated, the incorporation of two bulky acetyl groups in between the methoxy groups increased the intramolecular interaction resulting in a rotation about the C-C bond between the two benzene rings until a position of minimum interaction was reached. The effect was evident in the ¹H NMR spectrum of the acetate where the two gem-di-methyl groups were no longer identical and displayed two six proton singlets instead of a broad 12 proton singlet as was present in the parent compound 9. We have named 9 ageratoriparin.

The roots of A. riparia afforded, in addition to dammadienyl acetate, chromenes 6, 8–13, 15 and 16 [13]. The new compound 10 ($C_{13}H_{14}O_4$, [M] 234) was obtained as a colourless oil. The ¹H NMR spectrum of 10 indicated it to be closely similar to eupatoriochromene 13 [10], differing only in having a hydroxymethyl group at C-13 (δ 3.64, 2H, s) replacing the C-2 methyl group in the latter. Thus, 10 was evidently the alcohol corresponding to ester 5.

EXPERIMENTAL

400 MHz ¹H NMR spectra were recorded in CDCl₃ with TMS as int. standard and IR spectra in CHCl₃. CI-MS were measured using isobutane as reagent gas. Optical rotations were measured in CHCl₃. HPLC was performed using a RP-8 column, flow rate ca 2 ml/min, ca 100 bar. CC was performed on silica gel (Grade II) and TLC on pre-coated aluminium or glass plates coated with silica gel (GF 254) (layer thickness 1.5 or 0.5 mm). The solvent systems used were A, Et₂O-petrol (1:9); B (1:4); C (2:3); D (1:1); E (3:2); F, C₆H₆-Me₂CO (9:1) and G (8:2).

Isolation of chromenes. Air dried plant material (500 g) (voucher RMK 9316) was chopped and extracted with MeOH-Et₂O-petrol (1:1:1). The resulting extract was first treated with MeOH to remove long chain satd hydrocarbons. The defatted extract was subjected to CC using Et₂O and petrol in different proportions as eluents. The following fractions (200 ml each) were collected: fraction 1 (petrol), fraction 2, Et₂O-petrol (1:9), fraction 3, Et₂O-petrol (3:7), fraction 4, Et₂O-petrol (1:1) and fraction 5 (Et₂O). Fraction 1 afforded 10 mg germacrene D. TLC of fraction 2 (system A, 3 developments) gave 32 mg 13. Prep. TLC of fraction 3 (system A) followed by TLC (system B) afforded 220 mg 12 and 30 mg 1 (R_c 0.6 in B). Separation of fraction 4 by prep. TLC (system C) followed by TLC (system C, 2 developments) yielded 17 mg 14, 16 mg 15 and 8 mg 2 (R_c 0.55). Prep. TLC of fraction 5 (system E) gave three major bands. Separations of the least polar band by TLC (system D) yielded 4.5 mg 9 (R_f 0.65). The middle band after two TLC purifications (in systems E and F, respectively) gave 2.6 mg 5 (R_f 0.4 in F). The most polar band after purification by TLC (system G) afforded five crude compounds which were further purified by HPLC using MeOH-H₂O (3:2) to yield 8.6 mg 8 ($R_t = 1 \text{ min}$), 6 mg 6 ($R_t = 1.5 \text{ min}$), 1 mg 4 ($R_t = 3 \text{ min}$) and using MeOH-H₂O (7:3), to afford 2 mg 3 ($R_t = 1 \text{ min}$) and $4 \text{ mg } 7 (R_1 = 1.5 \text{ min}).$

The roots of A. riparia were worked-up in the same way as aerial parts to give chromatographic fractions 1–5 as mentioned before. Purification of fraction 1 by TLC (system A) gave 16.5 mg dammadienyl acetate. Fraction 2 after TLC (system C) afforded 6 mg 12, 15.9 mg 13 and 7 mg 11. Fraction 3 afforded by TLC (system D) sepn, 10 mg 15. Crystallization of fraction 4 from Et₂O gave 14 mg 16. TLC of fraction 5 (system F, two developments) yielded 1.5 mg 6, 2.5 mg 8, 2.5 mg 9 and 2.5 mg 10 (R_f 0.6).

6-Hydroxyeupatoriochromene B (1). Colourless oil; UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm: 208, 236 sh, 262, 276 sh, 330; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3540 (OH), 1495, 1475, 1450, 1400, 1385, 1370; MS m/z (rel. int.): 236.104 [M]⁺ (38), 221 [M – Me]⁺ (100); ¹H NMR (CDCl₃): δ 5.54 (1H, d, J = 9.5 Hz, H-3), 6.21 (1H, d, J = 9.5 Hz, H-4), 6.37 (1H, s, H-5), 1.45 (6H, br s, gem-di-Me), 3.9 (3H, s, OMe), 3.93 (3H, s, OMe), 5.31 (1H, s, OH-6).

6-(1-Hydroxyethyl)-eupatoriochromene B (2). Colourless gum; $[\alpha]_D^{24} = -6.29^{\circ}$ (CHCl₃; c 0.89); UV $\lambda_{\max}^{E_{1}O}$ nm: 210, 222, 236 sh, 270, 280 sh, 310; IR $\nu_{\max}^{CHCl_3}$ cm⁻¹: 3520 (OH), 1648, 1610, 1470, 1400, 1385, 1365; MS m/z (rel. int.): 264.136 [M]⁺ (10), 249 [M - Me]⁺ (62), 231 [249 - H₂O]⁺ (100); ¹H NMR (CDCl₃): δ 5.53

 $(1H, d, J = 10 \text{ Hz}, \text{H-3}), 6.25 (1H, d, J = 10 \text{ Hz}, \text{H-4}), 6.72 (1H, s, H-5), 5.02 (1H, q, J = 6.5 \text{ Hz}, H-11), 1.46 (3H, d, J = 6.5 \text{ Hz}, H-12), 1.43 (3H, br s, gem-di-Me), 3.85 (3H, s, OMe), 3.91 (3H, s, OMe). Oxidation of 2 (3 mg) with excess of pyridinium-dichromate in <math>\text{CH}_2\text{Cl}_2$ at room temp. (12 hr) followed by TLC (system D) gave 2 mg methylripariochromene A 12.

13-Hydroxyacetovanillochromene (3). Colourless oil; $[\alpha]_D^{24} = +12^{\circ}$ (CHCl₃; c 0.5); UV $\lambda_{\text{max}}^{\text{Et,O}}$ nm: 212, 236, 262 and 312; IR $\nu_{\text{max}}^{\text{CHCl_3}}$ cm⁻¹: 3540 (OH), 1685 (conjugated >C=O), 1610, 1395, 1320; CIMS m/z (rel. int.): 249 [MH]⁺ (100), 217 [MH - MeOH]⁺ (28); ¹H NMR (CDCl₃): δ 5.67 (1H, d, J = 10 Hz, H-3), 6.48 (1H, d, J = 10 Hz, H-4), 7.44 (1H, d, J = 2 Hz, H-5), 7.27 (1H, d, J = 2 Hz, H-7), 2.55 (3H, s, H-12), 3.68 (2H, s, H-13), 1.45 (3H, s, H-14), 3.91 (3H, s, OMe).

13-Feruloyloxyacetovanillochromene (4). Colourless crystals from Et₂O, mp 122.5°; $[\alpha]_{D}^{24} = +89.6$ ° (CHCl₃; c 0.22); UV $\lambda_{\text{max}}^{\text{Et₂O}}$ nm: 208, 238, 258, 292 sh, 320; IR $\nu_{\text{c}}^{\text{CHCl_3}}$ cm⁻¹: 3520 (OH), 1725 (ester >C=O), 1685 (conjugated >C=O), 1615, 1530, 1480, 1450, 1390 and 1320; MS m/z (rel. int.): 224.152 [M] + (0.5), 217 [M - CH₂Oferul] + (100); ¹H NMR (CDCl₃): δ 5.64 (1H, d, J = 10 Hz, H-3), 6.48 (1H, d, J = 10 Hz, H-4), 7.46 (1H, d, J = 2 Hz, H-5), 7.23 (1H, d, J = 2 Hz, H-7), 2.46 (3H, s, H-12), 4.48 (1H, d, J = 12 Hz, H-13), 4.21 (1H, d, J = 12 Hz, H-13'), 1.57 (3H, s, H-14), 3.91 (3H, s, OMe); feruloyl: δ 6.16 (1H, d, J = 16 Hz, H-8'), 7.29 (1H, d, J = 16 Hz, H-7'), 6.90 (1H, d, J = 2 Hz, H-2'), 6.87 (1H, d, J = 8.5 Hz, H-5'), 6.92 (1H, dd, J = 8.5 and 2 Hz, H-6'), 3.89 (3H, s, OMe), 5.85 (1H, s, 4'-OH).

13-Feruloyloxyeupatoriochromene (5). Colourless crystals from Et₂O, mp 147.5°; [α]_D²⁴ = +106.9° (CHCl₃; c 0.13); UV λ _{max} 206, 246 sh, 258, 280 sh and 326; IR ν _{max} 2700 (chelated OH), 3520 (OH), 1725 (ester >C=O), 1650 (conjugated >C=O), 1620, 1530, 1390, 1290, 1170; MS m/z (rel. int.): 410.136 [M]⁺ (0.5), 203 [M - CH₂Oferul.]⁺ (100); ¹H NMR (CDCl₃): δ 5.5 (1H, d, J = 10 Hz, H-3), 6.17 (1H, d, J = 10 Hz, H-4), 7.25 (1H, s, H-5), 6.41 (1H, s, H-8), 2.41 (3H, s, H-12), 4.47 (1H, d, J = 12 Hz, H-13), 4.12 (1H, d, J = 12 Hz, H-13'), 1.5 (3H, s, H-14), 7.78 (1H, s, 7-OH); feruloyl: δ 6.17 (1H, d, J = 16 Hz, H-8'), 7.25 (1H, d, J = 16 Hz, H-7'), 6.88 (1H, d, J = 2 Hz, H-2'), 6.87 (1H, d, J = 8.5 Hz, H-5'), 6.92 (1H, dd, J = 8.5 and 2 Hz, H-6'), 5.58 (1H, s, 4'-OH), 3.89 (3H, s, OMe).

13-Hydroxymethylripariochromene A (6). Colourless gum; $[\alpha]_{D}^{24} = + 14^{\circ}$ (CHCl₃; c 0.45); UV $\lambda_{max}^{Ei,O}$ nm: 218, 256, 280; IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3480 (OH), 1680 (>CO), 1610, 1480, 1430, 1390; CIMS m/z (rel. int.): 279 [MH]⁺ (100), 247 [MH – MeOH]⁺ (18); ¹H NMR (CDCl₃): δ 5.58 (1H, d, J = 10 Hz, H-3), 6.46 (1H, d, J = 10 Hz, H-4), 7.24 (1H, s, H-5), 2.59 (3H, s, H-12), 3.69 (2H, s, H-13, H-13'), 1.42 (3H, s, H-14), 3.88 (3H, s, OMe), and 3.97 (3H, s, OMe).

13-Hydroxyripariochromene A (7). Colourless gum; $[\alpha]_D^{2d} = +23.6^{\circ}$ (CHCl₃: c 0.22); UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm: 212, 264, 310, 350; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (chelated OH), 3460 (OH), 1690 (>CO), 1460, 1415, 1320; MS m/z (rel. int.): 264.099 [M]⁺ (4), 233 [M - CH₂OH]⁺ (100); ¹H NMR (CDCl₃): δ 5.57 (1H, d, J = 10 Hz, H-3), 6.44 (1H, d, J = 10 Hz, H-4), 7.14 (1H, s, H-5), 2.55 (3H, s, H-12), 3.68 (2H, s, H-13, H-13'), 1.43 (3H, s, H-14), 3.88 (3H, s, OMe).

6-(1-Hydroxyethyl)-13-hydroxyeupatoriochromene B (8). Colourless gum, $[\alpha]_D^{24} = +44.2^\circ$ (CHCl₃; c 0.84); UV $\lambda \frac{\text{Et}_2\text{O}}{\text{max}}$ nm: 210, 275, 284 sh, 310; IR $\nu \frac{\text{CHCl}_3}{\text{max}}$ cm⁻¹: 3460 (OH), 1620, 1470, 1310; MS m/z (rel. int.): 280.130 [M]⁺ (6), 262 [M - H₂O]⁺ (7),

249 $[M - CH_2OH]^+$ (100), 231 $[249 - H_2O]^+$ (88); ¹H NMR (CDCl₃); δ 5.54 (1H, d, J = 10 Hz, H-3), 6.42 (1H, d, J = 10 Hz, H-4), 6.77 (1H, s, H-5), 5.03 (1H, q, J = 6.5 Hz, H-11), 1.47 (3H, d, J = 6.5 Hz, H-12), 3.69 (1H, d, J = 11.5 Hz, H-13), 3.64 (1H, d, J = 11.5 Hz, H-13'), 1.4 (3H, s, H-14), 3.87 (3H, s, OMe), 3.93 (3H, s, OMe). Oxidation of **8** (4 mg) with pyridinium dichromate in CH₂Cl₂ at room temp. (10 hr) followed by TLC (system E, two developments) afforded 3 mg 6.

Ageratoriparin (9). Light yellow gum; UV $\lambda_{\text{max}}^{\text{Et}_3\text{O}}$ nm: 208, 236 sh, 272, 330; IR $\nu_{\text{c}}^{\text{CHCl}_3}$ cm⁻¹: 3580 (OH), 1600, 1470, 1435, 1400, 1380, 1150, 1125, 1100; MS m/z (rel. int.): 470.194 [M]⁺ (48), 455 [M - Me]⁺ (100), 220 [M/2 - Me]⁺ (18); ¹H NMR (CDCl₃): δ 5.47 (2H, d, J = 10 Hz, H-3, H-3'), 5.86 (2H, d, J = 10 Hz, H-4, H-4'), 3.99 (6H, br s, 2 × OMe), 3.95 (6H, br s, 2 × OMe), 1.43 (12H, br s, 2 × gem-di-Me). Acetylation of 9 (4 mg) with λ c₂O-pyridine under reflux (8 hr) followed by usual workup and purification by TLC (system D) afforded 3 mg acetate; ¹H NMR (CDCl₃): δ 5.48 (2H, d, J = 10 Hz, H-3, H-3'), 5.82 (2H, d, J = 10 Hz, H-4, H-4'), 3.77 (6H, br s, 2 × OMe), 3.83 (6H, br s, 2 × OMe), 1.41 (6H, s, gem-di-Me), 1.43 (6H, s, gem-di-Me), 1.98 (6H, s, 2 × OAc).

13-Hydroxyeupatoriochromene (10). Colourless oil; $[\alpha]_{D}^{24} = -10^{\circ}$ (CHCl₃; c 0.25); UV $\lambda_{max}^{El_2O}$ nm: 210, 256, 273 sh, 352; IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3540 (chelated OH), 3320 (OH), 1650, 1600, 1440, 1396, 1330, 1130, 1090, 1060; MS m/z (rel. int.): 234.089 [M]⁺ (6), 203 [M - CH₂OH]⁺ (100); ¹H NMR: δ 5.52 (1H, d, J = 10 Hz, H-3), 6.45 (1H, d, d = 10 Hz, H-4), 7.33 (1H, d s, H-5), 6.36 (1H, d s, H-8), 2.54 (3H, d s, H-12), 3.64 (2H, d s, H-13, H-13'), 1.41 (3H, d s, H-14).

Acknowledgement—We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Bohlmann, F., Mahanta, P. K., Suwita, A., Suwita, Ant., Natu, A. A., Zdero, C., Dorner, W., Ehlers, D. and Grenz, M. (1977) Phytochemistry 16, 1973.
- Bohlmann, F., Zitzkowsky, P., Suwita, A. and Fiedler, L. (1978) Phytochemistry 17, 2101.
- 3. Bohlmann, F. and Fiedler, L. (1978) Phytochemistry 17, 566.
- Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) Chem. Ber. 110, 301.
- 5. Bohlmann, F. and Grenz, M. (1977) Chem. Ber. 110, 1327.
- Vivar, A. R. de, Cuevas, L. A. and Guerrero, C. (1971) Rev. Latinoam. Quim. 2, 32.
- 7. Romo, J., Rios, T. and Quijano, L. (1968) Tetrahedron 24,
- Herz, W., Ramakrishnam, G. and Murari, R. (1978) Phytochemistry 17, 1953.
- Bohlmann, F., Banerjee, S., Wolfrum, C., Jakupovic, J., King,
 R. M. and Robinson, H. (1985) Phytochemistry 24, 1319.
- 10. Anthonsen, T. (1969) Acta Chem. Scand. 23, 3605.
- Taylor, D. K. and Wright, J. A. (1971) Phytochemistry 10, 1665.
- Gomez, F., Quijano, L., Calderon, J. S., Perales, A. and Rios, T. (1982) Phytochemistry 21, 2095.
- Bohlmann, F. and Jakupovic, J. (1978) Phytochemistry 17, 1677.